SYNTHESES OF 1,4-DIHYDROPYRIDINES CONTAINING AMINO ACIDS AND REDUCTION OF ETHYL BENZOYLFORMATE

Takeshi ENDO, Yashuhiro HAYASHI, and Makoto OKAWARA

Research Laboratory of Resources Utilization, Tokyo Institute
of Technology, Ookayama, Meguro-ku, Tokyo 152

l-Benzyl-1,4-dihydronicotinamide derivatives(IIa-IId) containing amino acid moieties such as glycine, L-alanine, L-leucine and L-phenylalanine were prepared, and the asymmetric reduction of ethyl benzoylformate by use of IIa-IId was examined.

The reactions of 1-alkyl-1,4-dihydronicotinamide derivatives as a model for the reduced nicotinamide-adenine dinucleotide have been investigated because of their biochemical significance. 1-2) For instance, the reductions of activated carbonyl compounds 3) or olefines 4) by 1-benzyl-1,4-dihydronicotinamide (BNAH) have been reported. Further, syntheses and reactions of polymers containing BNAH structure have been reported. 5-7)

We, in this communication, wish to report the syntheses of 1-benzyl-1,4-dihydronicotinamide derivatives(IIa-IId) containing amino acids structure such as glycine, L-alanine, L-leucine and L-phenylalanine as a model of polymer catalysts, and the reduction of ethyl benzoylformate as an example of redox reaction by use of IIa-IId in the presence of magnesium perchlorate.

Syntheses of pyridinium salts(Ia-Id) and 1,4-dihydronicotinamides(IIa-IId) were carried out by the method, as shown in scheme 1. Ia-Id and IIa-IId were identified by infrared, uv, nmr and elemental analysis. The results were indicated in Tables 1 and 2.

Scheme 1. Preparation of 1-Benzyl-1,4-Dihydronicotinamides

Table 1. Syntheses of Pyridinium Salts(I)

Comp	ounds R	Yield ^{a)} (%)	mp. (°C)	λmax ^{b)} (nm)	[a] _D ^{23^c)}
Ia	Н	91	150-152	264	0
Ib	CH ₃	84	83-85	264	9.5
Ic	Сн ₂ Сн (Сн ₃) 2	97	70-72	263	-7.7
Id	^{СН} 2 ^С 6 ^Н 5	80	58-60	264	-26.8

a) Benzylation, b) 99.5% EtOH, c) 99.5% EtOH, c=5

Table 2. Preparation of 1,4-Dihydronicotinamides (II)

			•	
Compo	ounds R	Yield (%)	λmax ^{a)} (nm)	[a] _D ^{23b)}
IIa	Н	82	354	0
IIb	CH ₃	84	355	40.8
IIc	Сн ₂ Сн (Сн ₃) 2	64	354	-3.1
IId	^{СН} 2 ^С 6 ^Н 5	70	355	-38.5

a) 99.5% EtOH, b) 99.5% EtOH, c=5

Stereospecific reduction of pyruvate to D- or L-lactate by NADH is catalyzed by lactate dehydrogenase. ⁸⁾ It has been reported $^{9-10)}$ that stereoselective nonenzymatic reduction of esters of pyruvic acid and benzoylformic acid in the presence of magnesium perchlorate or zinc perchlorate and 1,4-dihydronicotinamide derivatives. For example, the reduction of ethyl benzoylformate with R-(-)-N-methylbenzyl-1,4-dihydronicotinamide as chiral model for NAD(P)H at room temperature proceeded quantitatively to give ethyl(R)-(-)-mandelate with an optical purity of 19%.

The reduction of ethyl benzoylformate with IIa-IId was attempted. A mixture of 2 mmole each of ethyl benzoylformate, IIa-IId and magnesium perchlorate in 50 ml of acetonitrile was allowed to react for 72 hrs at 26°C. After removing acetonitrile, 20 ml of water was added. The solution was extracted 3 times with ether. Ether was removed in vacuo and the residue was column-chromatographed on silica gel and eluted with benzene. Ethyl mandelate was obtained quantitatively and 1-benzyl-3-carbamoyl-pyridinium perchlorate was recovered from the aqueous solution in 80-90% yields. The configuration and optical purity of obtained ethyl mandelate were shown in Table 3.

Table 3. Reduction of Ethyl Benzoylformate by IIa-IId

1,4-Dihy	ydronicotinamides	product (Ethyl		mandelate)		
	R	Yield (%)	[α] _D ^{23^a)}	Configuration	Optical ^{b)} purity(%)	
IIa	Н	100			0	
IIb	CH ₃	100	-48.7	R	47	
IIc	СН ₂ СН (СН ₃) ₂	100	-27.3	R	26	
IId	^{СН} 2 ^С 6 ^Н 5	97	5.1	S	5	

a) 99.5% EtOH, c=2. b) pure ethyl mandelate
$$[\alpha]_{D}^{24} = -104^{\circ}^{11}$$

IIa-IId +
$$C_{6}^{H_{5}}C_{0}^{C-COEt}$$
 $\xrightarrow{1) Mg(ClO_{4})_{2}}$ $\xrightarrow{CONHCHCONH_{2}}$ + $C_{6}^{H_{5}}C_{0}^{C-COEt}$ $\xrightarrow{CH_{2}C_{6}H_{5}}$

Almost quantitative yields based on isolated ethyl mandelate and enantio-differentiating reaction with high optical yield by L-alanine derivative(IIb) were observed. It is extremely interesting that R-configuration was predominantly obtained in the case of R=CH $_3$ (optical purity; 47%) and R=CH $_2$ CH(CH $_3$) $_2$ (optical purity; 26%), on the other hand, in the case of R=CH $_2$ C $_6$ H $_5$ (optical purity; 5%) S-configuration was given.

- D. J. Creighton, J. Hujdn, G. Mooser, and D. S. Sigman, J. Amer. Chem. Soc., 95, 6855(1973).
- 2) S. Shinkai and T. Kunitake, Chem. Lett., 1974, 1113.
- 3) D. C. Dittmer and R. A. Fouty, J. Amer. Chem. Soc., 86, 91(1964).
- 4) Y. Ohnishi and M. Kagami, Chem. Lett., 1975, 125.
- 5) Y. Kurusu, K. Nakajima, and M. Okawara, Kogyo Kagaku Zasshi, 71, 934(1968).
- 6) A. S. Lindsey, S. E. Hunt, and N. G. Savill, Polymer 7, 479 (1966).
- 7) W. G. Lloyd and T. E. Durocher, J. Appl. Polym. Sci., 7, 2025(1963).
- 8) B. L. Vallee and W. E. C. Wacker, J. Amer. Chem. Soc., 78, 1771(1956).
- 9) Y. Ohnishi, M. Kagami, and A. Ohno, J. Amer. Chem. Soc., 97, 4766(1975).
- 10) K. Nishiyama, N. Baba, J. Oka, and Y. Inoue, J. Chem. Soc., Chem. Commun., <u>1976</u>, 101.
- 11) R. Roger, J. Chem. Soc., 1932, 2168.

(Received February 14, 1977)